Artin groups, projective arrangements, and fundamental groups of smooth complex algebraic varieties
نویسندگان
چکیده
We prove that for any affine variety S defined over Q, there exists an Artin group G such that a Zariski open subset U of S is biregular isomorphic to a Zariski open subset U’ of the character variety X(G,P0(3)) = Hom(G,P0(3))//P0(3). The subset U contains all real points of 5’. As an application, we construct new examples of finitely-presented groups which are not fundamental groups of smooth complex algebraic varieties. Groupes d ‘Artin, arrangements projectifs et groupes fondamentaux des vu&t& complexes algiibriques limes RCsumC. Nous montrons que pour toute vari& &fine S d@inie sur Q, il existe un groupe d’Artin G tel qu’un sow-ensemble ouvert de Zariski U de S est birkgulit?rement isomorphe ir un sow-ensemble ouvert de Zariski de la van’& des classes de reprt%entations Hom(G, P0(3))//P0(3). Le sous-ensemble U contient tous les points re’els de S. Comme application, nous construisons de nouveaux exemples de groupes de p&entation jinie qui ne sont pas le groupe fondamental d’une varitW complexe alge’brique lisse. Version francaise abrkgke Soit A un graphe bipartite, de parts P et L. Nous disons que p dans P et /! dans L sont incidents si p et C sont joints par une arr&te. Une r&alisation de A (comme arrangement dans P2) est une application I#J de P dans P2 et de JC dans l’espace projectif dual (P”)” des droites de P2, qui respecte l’incidence. Prkcisant un resultat de Mnev (voir [6]), nous montrons que pour tout schCma affine S de type fini sur Spec(Z), il existe A tel que S soit un ouvert de Zariski d’un espace de modules de realisations de A. A certains graphes bipartites A, suffisants pour rkaliser tout schCma affine, nous Note prksentke par Pierre DELIGNE. 0764~4442/97/032.5087 1 0 AcadCmie des SciencesElsevier. Paris 871 M. Kapovich and J. J. Millson attachons un groupe d’Artin (resp. de Shephard) correspondant G: (resp. G>), tel qu’un ouvert et ferme de Zariski, HomT(G:, PO(3))//PO(3) de l’espace Hom(G2, P0(3))//P0(3) soit, sur Q, isomorphe a un sous-espace ouvert de Zariski W de l’espace de modules des realisations de A. De plus, W contient tous les points reels. Les representations dans Homf (G:, PO(3)) se factorisent par GSq. Nous en deduisons que les schemas des classes de representations de groupes d’Artin et de Shephard dans PO(3) peuvent avoir des singular&% arbitrairement compliquees (meme en des points correspondant a une representation d’image finie). En revanche, si un groupe est le groupe fondamental d’une variete complexe algebrique lisse, nous avons des restrictions s&&es sur ces singular&s d’apres le theoreme suivant, consequence d’un theoreme de Hain (voir [2]) : TH~OR&ME. Soit M une varie’te’ complexe algebrique lisse, G un groupe reductif reel et p : n-1 (M) -+ G une representation d’image jinie. Alors le germe (analytique reel) (Hom(rr (M), G), p) et son complexifie sont des cones quasi-homogknes avec des generateurs de poids 1 et 2 et des relations de poids 2, 3 et 4. Supposons, de plus, que les orbites de Ad(G) darts Hom(rrr (IU), G) admettent une section locale qui passe par p. Alors le germe quotient (Hom(rr(M), G)//G, [p]) et son complexi’e’ sont des cones quasi-homogenes avec des genne’rateurs de poids 1 et 2 et des relations de poids 2, 3 et 4.
منابع مشابه
Topology and Geometry of Cohomology Jump Loci
We elucidate the key role played by formality in the theory of characteristic and resonance varieties. We define relative characteristic and resonance varieties, Vk and Rk, related to twisted group cohomology with coefficients of arbitrary rank. We show that the germs at the origin of Vk and Rk are analytically isomorphic, if the group is 1-formal; in particular, the tangent cone to Vk at 1 equ...
متن کاملFormality, Alexander Invariants, and a Question of Serre
We elucidate the key role played by formality in the theory of characteristic and resonance varieties. We show that the I-adic completion of the Alexander invariant of a 1-formal group G is determined solely by the cup-product map in low degrees. It follows that the germs at the origin of the characteristic and resonance varieties of G are analytically isomorphic; in particular, the tangent con...
متن کاملAround the tangent cone theorem
A cornerstone of the theory of cohomology jump loci is the Tangent Cone theorem, which relates the behavior around the origin of the characteristic and resonance varieties of a space. We revisit this theorem, in both the algebraic setting provided by cdga models, and in the topological setting provided by fundamental groups and cohomology rings. The general theory is illustrated with several cl...
متن کاملIntroductory courses of algebraic geometry usually explain that a smooth plane complex algebraic curve is homeomorphic to a closed orientable surface of genus
Introductory courses of algebraic geometry usually explain that a smooth plane complex algebraic curve is homeomorphic to a closed orientable surface of genus 1 2 (d− 1)(d− 2) where d is the degree of the defining equation of the curve. Homeomorphism type of a singular curve in P also can be easily visualized. It is the disjoint union of closed orientable surfaces, corresponding to irreducible ...
متن کاملNon-finiteness Properties of Fundamental Groups of Smooth Projective Varieties
For each integer n ≥ 2, we construct an irreducible, smooth, complex projective variety M of dimension n, whose fundamental group has infinitely generated homology in degree n + 1 and whose universal cover is a Stein manifold, homotopy equivalent to an infinite bouquet of n-dimensional spheres. This non-finiteness phenomenon is also reflected in the fact that the homotopy group πn(M), viewed as...
متن کاملSecond Cohomology and Nilpotency Class 2
Conditions are given for a class 2 nilpotent group to have no central extensions of class 3. This is related to Betti numbers and to the problem of representing a class 2 nilpotent group as the fundamental group of a smooth projective variety. Surveys of the work on the characterization of the fundamental groups of smooth projective varieties and Kähler manifolds (see [1],[3], [9]) indicate tha...
متن کامل